- heterotransplantation of human hematopoetic cells in nude mice. Int 7 Cancer 1979, 23, 751-761.
- Engert A, Burrows F, Jung W, et al. Evaluation of Ricin A chain containing immunotoxins directed against the CD30 antigen as potential reagents for the treatment of Hodgkin's disease. Cancer Res 1990, 50, 84-88.
- Phillips RA, Jewett MAS, Gallie BL. Growth of human tumors in immune-deficient SCID mice and nude mice. Curr Topics Microbiol Immunol 1989, 152, 259-263.
- Kamel-Reid S, Dick JE. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 1988, 242, 1706–1709.
- Schuler W, Bosma MJ. Nature of the SCID defect: a defective VDJ recombinase system. In: Bosma MJ, Phillips RA, Schuler W, eds. The SCID Mouse Characterisation and Potential Uses. Heidelberg, Springer, 1989, 55-62.
- Kamel-Reid S, Letarte M, Sirard C, et al. A model of acute lymphoblastic leukemia in immune-deficient SCID mice. Science 1989, 246, 1597–1600.
- Charly MR, Tharp M, Locker J, et al. Establishment of a human cutaneous T-cell lymphoma in C.B-17 SCID mice. J Invest Dermatol 1990, 94, 381-384.
- 22. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. *Nature* 1988, 335, 256-259.
- Purtilo DT, Falk K, Pirruccello SJ, et al. SCID mouse model of Epstein-Barr virus induced lymphomagenesis of immunodeficient humans. Int J Cancer 1991, 47, 510-517.
- McCune JM, Namikawa R, Kaneshima H, Schultz LD, Liebermann M, Weissman IL. The SCID-hu-mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 1988, 241, 1632–1639.
- 25. Engert A. Experimentelle zytostatische behandlung menschlicher tumorzellen in der nude maus: bietet das intrakranielle Testsystem eine Alternative? Dissertation 1985, Medizinische Hochschule Hannover.

- 26. von Kalle C, Wolf J, Becker A, et al. Growth of Hodgkin cell lines in severely combined immunodeficient mice. (Submitted)
- Schwonzen M, Kuehn N, Vetten B, Diehl V, Pfreundschuh M. Phenotyping of acute myelomonocytic (AMMOL) and monocytic (AMOL) leukemia: Association of T cell related antigens and skin infiltration in AMOL. Leukemia Res 1989, 10, 893–898.
- 28. Ziegler HW, Frizzera G, Bach F. Successful transplantation of a human leukemia cell line into nude mice: conditions optimizing graft acceptance. J Natl Cancer Inst 1982, 68, 15-17.
- Nordan RP, Potter M. A macrophage-derived factor required by plasmocytomas for survival and proliferation in vitro. Science 1986, 233, 566-569.
- Yoshioka T, Sato S, Fujiwara H, Hamaoka T. The role of antiasialo GMI antibody-sensitive cells in the implementation of tumorspecific T cell-mediated immunity in vivo. Japan J Cancer Res 1986, 77, 825-832.
- Cannon MJ, Pisa P, Fox RI, Cooper NR. Epstein-Barr virus induces aggressive lyphoproliferative disorders of human B cell origin in SCID/hu chimeric mice. J Clin Invest 1990, 85, 1333-1337.
- Rowe M, Young LS, Crocker J, Stokes H, Henderson S, Rickinson AB. Epstein-Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse model: Implications for the pathogenesis of EBV-positive lymphomas in man. J Exp Med 1991, 173, 147-158.
- 33. Tilly H, Bastard C, Delastre T, et al. Cytogenetic studies in untreated Hodgkin's disease. Blood 1991, 77, 1298-1304.
- Schouten HC, Sanger WG, Duggan M, Weisenburger DD, MacLennan KA, Armitage JO. Chromosomal abnormalities in Hodgkin's disease. *Blood* 1989, 73, 2149-2154.
- Ghetie MA, Richardson J, Tucker T, Jones D, Uhr JW, Vitetta ES. Disseminated or localized growth of a human B-cell tumor (Daudi) in SCID mice. Int J Cancer 1990, 45, 481-485.

Acknowledgements—This work was supported by grants of 'Deutsche Forschrings-gemeinschaft' (Di 184/9-4) and 'Franke-Weiskarn-Foundation' (TS 136/81 90).

Eur J Cancer, Vol. 28A, No. 8/9, pp. 1411–1413, 1992. Printed in Great Britain

0964–1947/92 \$5.00 + 0.00 Pergamon Press Ltd

ChlVPP: Reducing Toxicity in the Treatment of Hodgkin's Disease

Janine L. Mansi

COMBINATION CHEMOTHERAPY for Hodgkin's disease was first introduced at the National Cancer Institute in 1964. This consisted of mustine, vincristine, procarbazine and prednisolone (MOPP). Approximately 80% of patients achieved complete remission with a 5-year relapse-free survival of 68% [1, 2, 3]. Because of these impressive results, MOPP has always been the gold standard on which other treatment regimens for Hodgkin's disease have been based. However, the combination is not without toxicity. The predominant acute toxicity includes nausea, vomiting, superficial thrombophlebitis, peripheral neuropathy, bone marrow suppression and alopecia.

Over the last 20 years various changes have been made to the MOPP regimen in order to reduce the toxicity but without detracting from the clinical efficacy. ChlVPP (Table 1) was first

introduced at the Royal Marsden Hospital in 1976 with the aim of avoiding the gastrointestinal toxicity, thrombophlebitis, alopecia and myelosuppression by substituting chlorambucil for mustine, and the peripheral neuropathy by substituting vinblastine for vincristine. Alternative variations along the same line include MVPP (substituting vinblastine for vincristine) [4, 5], LOPP (substituting mustine for chlorambucil) [6], and BCVPP (omitting mustine, substituting vinblastine for vincristine and incorporating carmustine and cyclophosphamide) [7], to name but a few. Early results using ChlVPP suggested

Table 1. ChlVPP chemotherapy

Chlorambucil	6 mg/m ² (max. 10 mg)	Orally days 1-14
Procarbazine	100 mg/m ² (max. 150 mg)	Orally days 1-14
Prednisolone	40 mg/m ²	Orally days 1-14
Vinblastine	6 mg/m ²	IV days 1 and 8

J.L. Mansi is at St George's Hospital Medical School, London SW17 0RE, U.K.

This paper was presented at the international symposium on Hodgkin's disease, Royal Marsden Hospital, London, on 15–16 April 1991. Received 22 Nov. 1991; accepted 17 Mar. 1992.

Table 2. Relation of response and survival to various factor.	Table 2.	Relation of	f response and	survival i	to various factors
---	----------	-------------	----------------	------------	--------------------

		No. of patients	No CR n(%)		ning in ssion	Survival	
				5 years (%)	10 years (%)	5 years (%)	10 years (%)
Total		229	194 (85)	74.4	71.3	73.1	65.2
Sex	Male	152	126 (83)	72.1	67.5	84.1	73.5
	Female	77	68 (88)	78.7	78.7	83.9	79.5
Clinical S	Stage I	27	26 (96)	75.2	65.8	79.3	70.5
	II	89	78 (88)	79.4	76.2	79.9	77.8
	III	64	55 (86)	68.6	66.0	71.3	58.2
	IV	49	35 (71)	71.3	71.3	59.4	51.6
B Sympto	oms No	117	107 (91)	76.4	72.0	80.5	73.5
	Yes	112	87 (78)	71.7	69.9	65.3	56.5
Age	<26	74	66 (89)	82.4	79.4	86.0	86.0
	26-39	88	71 (81)	74.3	72.3	74.6	68.0
	40-59	43	38 (88)	61.5	61.5	66.3	39.6
	60+	24	19 (79)	65.7	52.6	39.7	21.7

equivalent response rates with less toxicity compared with MOPP and its variants [8, 9, 10].

Fortunately, this combination has also stood the test of time [11]. On completion of the study in 1986, 229 patients had received ChlVPP with a median follow-up of 92 months. No patient had received previous treatment. The median age of the patients was 30 years (range 16–81) of whom 152 were male and 77 female. The histological subtype of the patients was as follows: nodular sclerosis 137, mixed cellularity 70, lymphocyte-predominant 12 and lymphocyte-depleted 10. The majority of patients were stage II (89) or III (64) (Table 2). 'B' symptoms were experienced by 112 patients.

Prior to treatment, all patients were fully assessed by history, physical examination, routine blood tests including liver function tests, chest X-ray, lymphangiogram and bone marrow aspirate and trephine. When clinically indicated, additional evaluation included a CT, liver ultrasound, gallium scan and staging laparotomy. Patients were reassessed prior to each course of treatment by physical examination, chest X-ray, abdominal X-ray and full blood count. On completion of treatment all previously abnormal tests were repeated. A complete remission was defined as return to normal of all previously abnormal clinical findings and investigations.

ChlVPP chemotherapy was given in four weekly cycles. Patients were treated to complete remission plus at least two extra cycles. If the leucocyte or platelet count was less than 3×10^9 /l and 100×10^9 /l, respectively, treatment was delayed by 1 week or until the counts recovered. If grade II neuropathy occurred, the dose of vinblastine was reduced from 6 to 3 mg/m².

The addition of radiotherapy following completion of chemotherapy was generally, but not always, given to patients with stage I and II disease, and to sites of bulky disease in patients with stage III and IV disease. This was started 6 weeks after the last course of chemotherapy. 53 patients received mantle radiotherapy, 13 patients mantle radiotherapy together with para aortic strip, 8 patients inverted Y, 39 patients total nodal irradiation and 15 patients received modified field radiotherapy.

The complete remission rate was 85% with a 10-year overall survival rate of 76% for those patients who achieved complete

remission. This compares with a 10-year survival of only 9.9% for those patients who did enter complete remission. The 10-year relapse-free interval and overall survival for various factors is shown in Table 3. These long-term results are similar to those achieved with MOPP [3] and appear to be better than the recently published results from a randomised study comparing MOPP with LOPP [12].

In general, the treatment was very well tolerated. The toxicity according to WHO criteria is shown in Table 3. Of particular note is the marked absence of nausea, vomiting, alopecia, neuropathy and stomatitis in the majority of patients receiving this combination. Moderate myelosuppression did occur but this was only in a minority of patients. 2 patients died of infection, but they were not leucopenic. Only a small proportion of patients required a dose delay or dose reduction (Table 4). This compares very favourably with other regimens where dose reductions and/or delays are required in over 30–40% of patients [5, 6]. Because the number of patients involved in this series is so small the prognostic significance of this has not been analysed.

Unfortunately, sterility [3, 13, 14] and an increased incidence of second malignancies occur in any combination containing an alkylating agent [15, 16]. Likewise in this study, most male

Table 3. World Health Organization graded toxicity

	Patients (%)				
	I	II	III	IV	
Anaemia	20	9	0	0	
Leukopenia	21	20	7	2	
Thrombocytopenia	8	10	4	0.5	
Nausea and vomiting	18	13	1.5	0.5	
Alopecia	5	1.5	0.5	0	
Neuropathy	11	3	0	0	
Infection	8	9	1.5	1.5	
Diarrhoea	2.5	0.5	0	0	
Stomatitis	1.5	1	0	0	

Table 4. Dose reduction or delay

	Course					
	1	2	3	4	5	6
% of patients with any dosage						
reduction	6	13	13	12	16	15
% of patients with 1 week delay	_	4	7	4	11	5
% of patients with 2 weeks delay	_	6	4	6	7	10

patients became (or remained) infertile and the actuarial risk of secondary leukaemia or a second malignancy was 2.7 and 8.3% (this includes five cases of basal cell carcinoma) at 10 years, respectively. New drug combinations are currently being evaluated with the aim of reducing or preventing these long-term toxicities.

In conclusion, ChlVPP combination chemotherapy for Hodgkin's disease represents a major step forward in markedly reducing the acute toxicity seen with other drug combinations whilst maintaining the long-term remissions achieved with MOPP.

- De Vita VT, Scrpick AA, Carbone PP. Combination chemotherapy in the treatment of advanced Hodgkin's disease. Ann Intern Med 1970, 73, 881-895.
- De Vita VT Jr, Simon RM, Hubbard SM, et al. Curability of advanced Hodgkin's disease with chemotheraphy; long term followup of MOPP-treated patients at the National Cancer Institute. Ann Intern Med 1980, 92, 587-595.
- 3. Longo DL, Young RC, Wesley M, et al. Twenty years of MOPP therapy for Hodgkin's disease. J Clin Oncol 1986, 4, 1295.
- 4. McElwain TJ, Wrigley PFM, Hunter A, et al. Combination chemo-

- therapy in advanced and recurrent Hodgkin's disease. Natl Cancer Inst Monogr 1973, 36, 395.
- Sutcliffe SB, Wrigley PFM, Petro J, et al. MVPP chemotherapy regimens for advanced Hodgkin's disease. Br Med J 1978, i, 679-683
- Hancock BW. Randomised study of MOPP (mustine, Oncovin, procarbazine, prednisone) against LOPP (Leukeran substitute for mustine) in advanced Hodgkin's disease. Radiother Oncol 1986, 7, 215
- Bakemeier RF, Anderson JR, Costello W, et al. BCVPP chemotherapy for advanced Hodgkin's disease: evidence for greater duration of complete remission, greater survival and less toxicity than a MOPP regimen. Ann Intern Med 1984, 101, 447-456.
- 8. McElwain TJ, Toy J, Smith IE, et al. A combination of chlorambucil, vinlastine, procarbazine and prednisolone for treatment of Hodgkin's disease. Br J Cancer 1977 36, 276-280.
- Kaye SB, Juttner CA, Smith IE, et al. Three years experience with ChlVPP (a combination of drugs of low toxicity) for the treatment of Hodgkin's disease. Br J Cancer 1979, 39, 168-171.
- Dady PJ, McElwain TJ, Austin DE, et al. Five years experience with ChIVPP: effective low toxicity combination chemotherapy for Hodgkin's disease. Br J Cancer 1982, 45, 851-859.
- Selby P, Patel O, Milan S, et al. ChlVPP combination chemotherapy for Hodgkin's disease: long term results. Br J Cancer 1990, 62, 279-285.
- 12. Hancock BW, Hudson GV, Hudson BV, et al. British National Lymphoma Investigation randomised study of MOPP (mustine, Oncovin, procarbazine, prednisolone) against LOPP (Leukeran substituted for mustine) in advanced Hodgkin's disease—long term results. Br J Cancer 1991, 63, 579–582.
- Whitehead E, Shalet SM, Blackledge G, et al. The effects of Hodgkin's disease and combination chemotherapy on gonadal function in the adult male. Cancer 1982, 49, 418–422.
- Sutcliffe SB. Infertility and gonadal function in Hodgkin's disease.
 In: Selby P, McElwain TJ, eds. Hodgkin's Disease. Oxford, Blackwell, 1987, 339-360.
- Colman M, Selby P. Second malignancies and Hodgkin's disease.
 In: Selby P, McElwain TJ, eds. Hodgkin's Disease. Oxford, Blackwell, 1987, 361-377.
- 16. Tucker MA, Coleman CN, Cox RS, et al. Risk of second cancers after treatment for Hodgkin's disease. N Engl J Med, 318, 76-81.

Eur J Cancer, Vol. 28A, No. 8/9, pp. 1413–1415, 1992 Printed in Great Britain 0964-1947/92 \$5.00 + 0.00 Pergamon Press Ltd

Expression of Cathepsin D in Head and Neck Cancer

R. Zeillinger, H. Swoboda, E. Machacek, D. Nekahm, G. Sliutz, W. Knogler, P. Speiser, E. Swoboda and E. Kubista

To determine overexpression of cathepsin D in head and neck tumours we examined cytosols from 53 primary tumours, nine cytosols of lymph node metastases and 12 cytosols from adjacent normal tissue. We found a significantly lower concentration in normal tissue compared with tumour cytosol as well as with metastases, even when we compared tumours and corresponding metastases pairwise. In addition, we found a significantly higher concentration of cathepsin D in five lymph node metastases than in the corresponding tumours. We conclude that the reported role of cathepsin D is not restricted to breast cancer but could also be important in head and neck cancer.

Eur J Cancer, Vol. 28A, No. 8/9, pp. 1413–1415, 1992.

INTRODUCTION

CATHEPSIN D, a lysosomal acidic protease [1], possibly degrades extracellular matrix [2] when autoactivated. Thus, it may facilitate dissemination of tumours [3]. It has been reported that cathepsin D is secreted in excess by breast cancer cells compared

with normal cells [4]. In clinical studies, overexpression of cathepsin D correlated with aggressive tumour behaviour, early relapse and shortened survival [5, 6]. Compared with histopathological factors, cathepsin D was an independent marker for prognosis, especially in node-negative breast cancer [5–9].